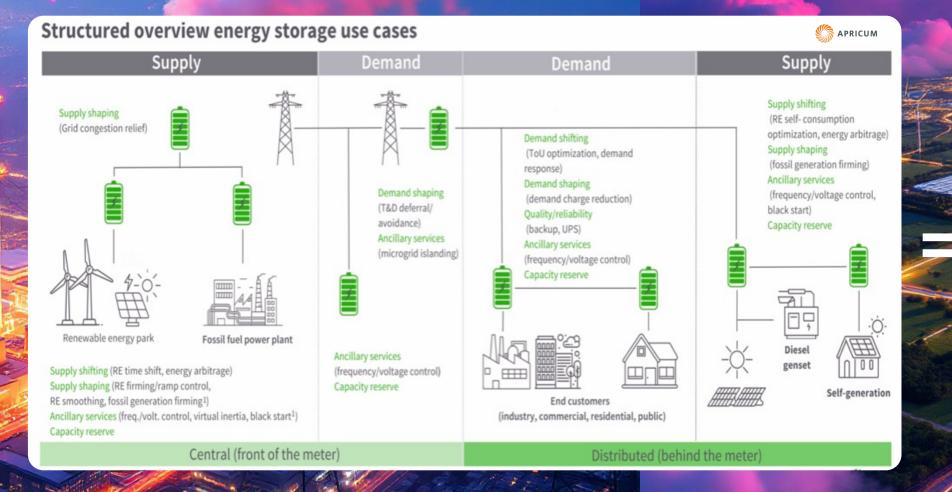


The world's fastest battery

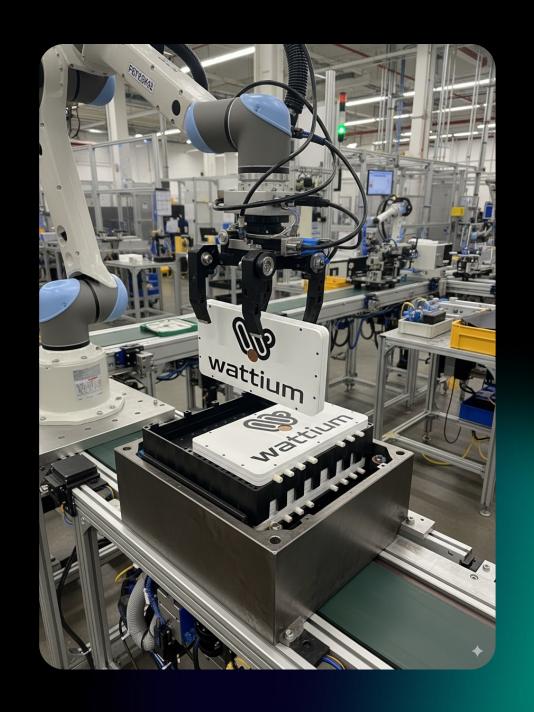
A Breakthrough in Ultra-Fast Grid Stability and Resilience.



Roger Casals CEO

CENTRALIZED GRID

DISTRIBUTED GRID


OPPORTUNITY

Storage, stabilization, and flexibility

W wattium

We design and manufacture **batteries** that charge in 5 minutes, react in milliseconds, at sustained high power, last 30,000+ cycles, cost 5x less, are safe (no Lithium or rare mat.), and solve the challenges of the electrical grid.

A new energy storage technology

Modular Architecture

POWER CELL

28 bi-polar sub-cells.

- •50 V (100 V to 0 V)
- · 41.44 Wh
- · 497.28 W

POWER MODULE

21 Cells in parallel.

- · 50 V
- · 870.24 Wh
- · 10.4 kW

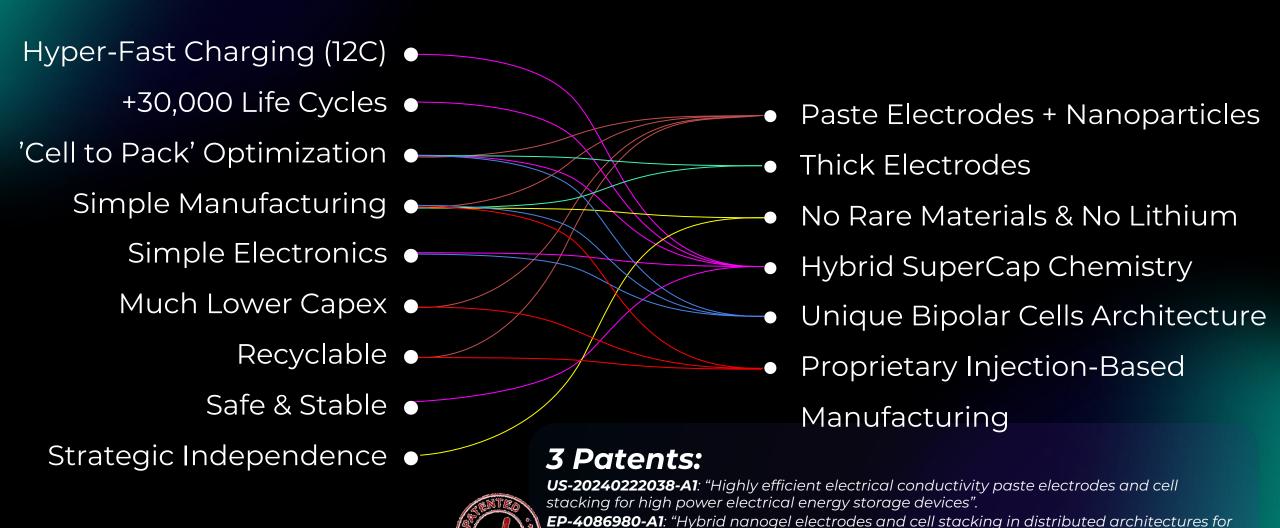
POWER RACK

20 Modules in series

- · 1000 V
- 17.4 kWh
- · 208.8 kW

MEGACELL

10 Racks in parallel.


- · 1000 V
- · 174 kWh
- · 2.088 MW

Features

Secret Sauce

EP-4044269-A1: "Winery-waste-derived graphene-like carbon for potassium energy storage".

high power electrical energy hybrid storage systems".

Our Team

Roger Casals
CEO
Entrepreneur with5 exits
UPC, IES, Harvard

PhD. Daniel Rueda Co-Founder: R&D PhD. Nanoscience, UB CSIC, ICN2

Jordi Aibar
Co-Founder: Engineering
MSc Telecommunications UPC
Founder of Energy Startups

PhD. Eduard Alarcón
Co-Founder
Ph.D. | Electrical Engineering
UPC & CU Boulder

PhD. Pedro Gómez-Romero
Co-Founder
Ph.D. | Chemistry (Georgetown Univ)

ICN2 Research Leader

Chemical Engineers
Lab Technicians

TESLA - MEGAPACK

Energy: 3.9 MWh Power: 1.9 MW

Charging Speed: 2 hours = 0.5C

Unit Price: \$1,000,000

· You need **25 Megapacks**

\$25,000,000

Benchmark

You need to manage

3.9 **MWh**

in

5 minutes

generated by a solar powerplant

or

discharge to the grid

WATTIUM - MEGACELL

Energy: 3.9 MWh Power: 46.2 MW

Charging Speed: **5 minutes = 12C**

Unit Price*: 5,000,000 €

You Only need 1 Megacell

Benchmark

Feature / Model	Wattium Megacell 2	Tesla Megapack 2 XL	CATL EnerC	BYD Cube T
Chemistry	Na-ion + Carbon	LFP (LiFePO ₄)	LFP (LiFePO ₄)	LFP (LiFePO ₄)
Power/Energy (C-rate)	12C up to 24C	0.5C-1C	0.5C-1C	0.5C-1C
Max. Continuous Power	2 MW	1.9 MW	1.5 MW	1.5 MW
Energy Storage Cap.	167 kWh	3.9 MWh	3.5 MWh	3.3 MWh
Fastest Full Charge	5 min (0–100%)	2 h	2 h	2 h
Round-Trip Efficiency	93%	92–94%	90–92%	90–92%
Cycle Life (@100% DoD)	30,000+	6,000–10,000	10,000	10,000
Safety	Non-flammable	BMS + fire suppression	BMS, fire protection	BMS, fire protection
Maintenance	Minimal	Remote diagnostics	Remote diagnostics	Remote diagnostics
Environmental	No Li+ No rare mat.	Li+-based	Li+-based	Li-+based
Energy Density (Wh/L)	24.7	96	104	168
Power Density (W/L)	296	24	52	84
€/MW·cycle	8,3	52,6	53,3	50

Market: **BESS**

Customer:

FTM: front of the meter Generation / Distribution

10 MWh - 200MWh +

BTM: behind the meter

Industrial

Residential

Battery energy storage system capacity is likely to quintuple between now and 2030.

Annual added battery energy storage system (BESS) capacity, %

Note: Figures may not sum to 100%, because of rounding. Source: McKinsey Energy Storage Insights BESS market model

McKinsey & Company

Market: **BESS**

Customer:

FTM: front of the meter

Generation / Distribution

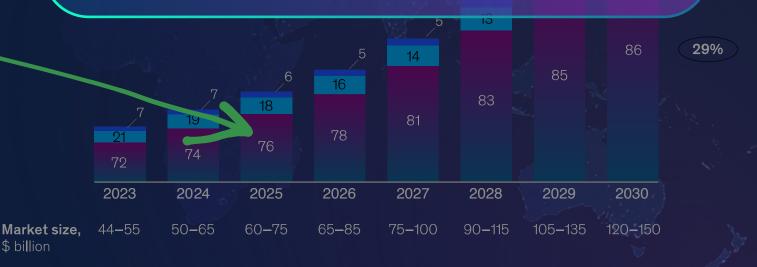
10 MWh - 200MWh +

BTM: behind the meter

Industrial

30 kWh - 10MWh

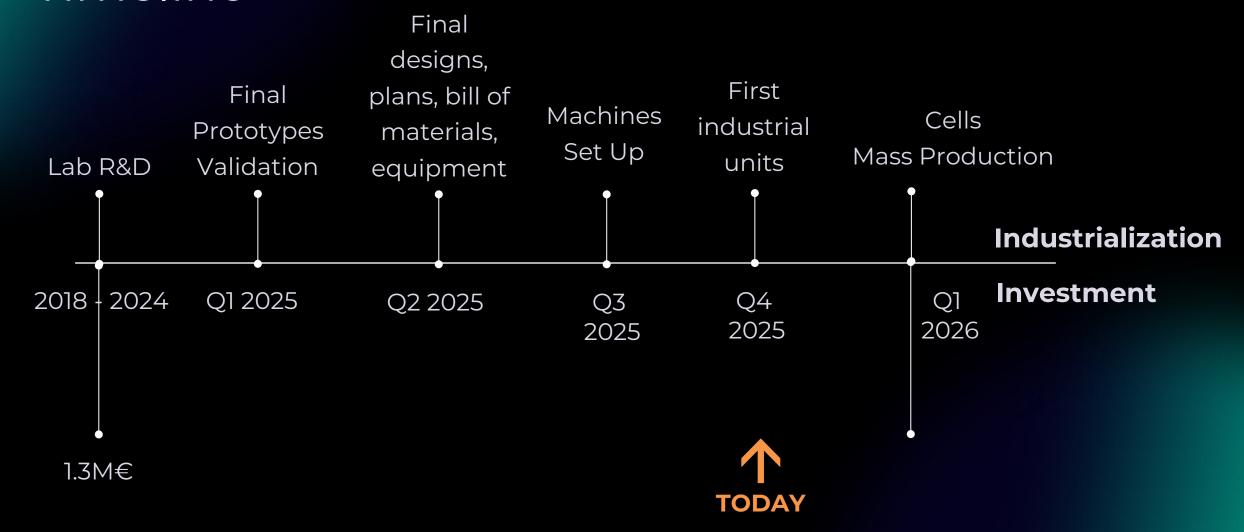
Residential


Battery energy storage system capacity is likely to quintuple between now and 2030.

Annua

100

- **Frequency Regulation**
- **Ultra-fast Peak Shaving**
- **Grid Forming (Black Start)**
- Power Quality (Sags/Swells)
- Kinetic Energy Recovery


GR,

3-30

McKinsey & Company

\$ billion

Timeline

Ultra-fast batteries— at very-high power.

Thank You!

